Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results
نویسندگان
چکیده
Primal-dual interior-point path-following methods for semidefinite programming are considered. Several variants are discussed, based on Newton’s method applied to three equations: primal feasibility, dual feasibility, and some form of centering condition. The focus is on three such algorithms, called the XZ, XZ+ZX, and Q methods. For the XZ+ZX and Q algorithms, the Newton system is well defined and its Jacobian is nonsingular at the solution, under nondegeneracy assumptions. The associated Schur complement matrix has an unbounded condition number on the central path under the nondegeneracy assumptions and an additional rank assumption. Practical aspects are discussed, including Mehrotra predictor-corrector variants and issues of numerical stability. Compared to the other methods considered, the XZ+ZX method is more robust with respect to its ability to step close to the boundary, converges more rapidly, and achieves higher accuracy.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملLocal and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming
In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear conver...
متن کاملA Survey of Numerical Methods for Nonlinear Semidefinite Programming
Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems. Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP methods and primal-dual interior point methods. We describe their typical algorithmic forms...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 8 شماره
صفحات -
تاریخ انتشار 1998